

ENTREGABLE 9

MÓDULO DE MEDIDAS, VERIFICACIÓN Y FACTURACIÓN

Acceso a la aplicación : https://app.energysequence.com

user : thd@thd.es |password : thd

ÍNDICE

• Especificación

• Capturas de pantalla

1- ESPECIFICACIÓN

Título de la especificación: MÓDULO DE MEDIDAS, VERIFICACIÓN Y FACTURACIÓN

AUTOMÁTICA

Alcance de la especificación:

País de aplicación: España

Elaborado por: Pit Stenzel

Responsable de la revisión: Yesnier Bravo

Fecha de la especificación:

Versión Fecha

V0 (versión inicial) 7/01/2020

V1 (revisión) 17/02/2020

1. Especificación
List of case of uses and smartcontract methods that each of them are expected to consume

accosume:

Use case 0: PPA contract management

- createPPA()

- getMyPPAs()

- getPPADetails()

- getPPATotals()

https://app.energysequence.com/
mailto:thd@thd.es

- signPPA()

- linkMeterToPPA()

Use case 1: Generated and consumed energy update

- saveEnergy()

- Use case 2: PPA contract monitoring alert

- closeValidationPeriod()

Use case 3: Energy balance recover

- closeBalancePeriod()

2. Events
The events are the way external apps can get notified about actions performed by the

smartcontract. The apps can get notified in real-time or they can browse and filter events

emitted from the beginning of the smartcontract deployment.

● PPACreated(bytes32 ppaId, address investor, address user): emitted when the

PPA is successfully created

● PPASigned(string ppaId, address user): emitted when the user signs the PPA

● MeterSet(bytes32 ppaId, string meterId, address meterAccount): emitted when

a meter is successfully added to a PPA

● EnergySaved(bytes32 ppaId, string meterId, address meterAccount, uint32

energyAmount, uint8 energyType): emitted when the energy measures are successfully

aggregated into the PPA

● ClauseViolationAlert(bytes32 ppaId, string clause, uint32 delta, bytes32

periodId): emitted when any clause is violated. “clause” possible values:

“CONSUMPTION_MIN”, “CONSUMPTION_MAX”, “GENERATION_MIN”, “GENERATION_MAX”.

● BalancePeriodClosed(bytes32 ppaId, uint start, uint end, uint32 consumed,

uint32 generated, uint32 cost, address closedBy): emitted when the current open period

is successfully calculated, closed, registered and reseted.

● ValidationPeriodClosed(bytes32 ppaId, uint start, uint end, uint8 alertsCount,

bytes32 periodId, address closedBy)

3. Smart Contract public methods
createPPA

function createPPA(address user, uint32 genAnualMin, uint32 genAnualMax, uint32

genPriceUnder, uint32 genPriceNormal, uint32 genPriceOver, string calldata otherFields)

Description

It creates a new PPA and sets the address that makes the request as the investor. It also opens

a new period in which the measures received from the meters will be aggregated. The properties

initialized during the PPA creation are the following:

- id: auto-generated

- investor: the address that makes the request

- user: parameter

- meters cloud: parameter

- signed: false

- generated energy minimum: parameter (generatedRange[0])

- generated energy maximum: parameter (generatedRange[1])

- current period generated total: 0

- PPA’s generated total: 0

- consumed energy minimum: parameter (consumedRange[0])

- consumed energy maximum: parameter (consumedRange[1])

- current period consumed total: 0

- PPA’s consumed total: 0

- consumed energy price below range: parameter

- consumed energy price inside range: parameter

- consumed energy price over range: parameter

- current period start: current block timestamp

- other fields: parameter

Restrictions

 ● PPA ID cannot already exist

Parameters

● user: address. Address that identifies the user of the PPA contract.

● cloud: address. Address that identifies the relared meters cloud.

● generatedRange: uint32[2]. Array with the expected range of the generated

energy clause in this order: min, max.

● consumedRange: uint32[2]. Array with the expected range of the consumed

energy clause in this order: min, max.

● energyPrices: uint32[3]. Array with the 3 prices of the energy in this order:

below, inside and over range.

● othersFields: string. JSON that contains any other field of the PPA.

Returns

● Nothing

Events

● PPACreated

getPPADetails
getPPADetails(bytes32 ppaId) external ppaExists(ppaId)

onlyInvestorOrUser(ppaId) view returns(address[2] memory owners, uint32[2] memory

generationRange, uint32[3] memory prices, address[2] memory metersAccounts, string memory

consumMeterId, string memory genMeterId, uint signed)

Description

It gets the details of a previously created PPA contract set during the PPA creation.

Restrictions

● The PPA must have been previously created

● Only the owners of the PPA (the investor or the user) can call this method.

Parameters

● ppaId: String. ID of the new PPA

Returns

● address[2] memory owners, uint32[2] memory generationRange, uint32[3] memory

prices, address[2] memory metersAccounts, string memory consumMeterId, string memory

genMeterId, uint signed

getMyPPAs
getMyPPAs() external view returns(bytes32[] memory)

Description

It returns a list of the PPAs associated to the address making the request.

Restrictions

● None

Parameters

● None

Returns

● bytes32[]: List of PPA identifiers

getPPATotals
getPPATotals(bytes32 ppaId) external ppaExists(ppaId) onlyInvestorOrUser(ppaId) view

returns(uint absoluteStart, uint32 absoluteGenerated, uint32 absoluteConsumed, uint

balanceStart, uint32 balanceGenerated, uint32 balanceConsumed, uint validationStart, uint32

validationGenerated, uint32 validationConsumed)

Description

It gets the totals of a previously created PPA contract.

Restrictions

● The PPA must have been previously created

● Only the owners of the PPA (the investor or the user) can call this method.

Parameters

● ppaId: String. ID of the new PPA

Returns

● absoluteStart: Start timestamp in epoch format of the absolute period

● absoluteGenerated: Amount of generated energy during the PPA life

● absoluteConsumed: Amount of consumed energy during the PPA life

● balanceStart: Start timestamp in epoch format of the current open balance

period

● balanceGenerated: Amount of generated energy during the current open

balance period

● balanceConsumed: Amount of consumed energy during the current open

balance period

● validationStart: Start timestamp in epoch format of the current open validation

period

● validationGenerated: Amount of generated energy during the current open

validation period

● validationConsumed: Amount of consumed energy during the current open

validation period

signPPA
signPPA(bytes32 ppaId) external ppaExists(ppaId) onlyUser(ppaId)

Description

It sets a PPA as signed.

Restrictions

 ● Only the user of the PPA can call this method.

Parameters

● ppaId: String. ID of the PPA.

Returns ●Nothing

Events

● PPASigned

linkMeterToPPA

linkMeterToPPA(bytes32 ppaId, string calldata meterId, uint8 meterType, address

meterAccount) external ppaExists(ppaId) onlyInvestorOrUser(ppaId)

Description

It links a meter to a previously created PPA

Restrictions

 ● Only the owners of the PPA (the investor or the user) can call this method.

Parameters

● ppaId: String. ID of the PPA.

● meterId: String. ID of the meter.

● meterType: uint8. Type of the meter

 ○ 1 = Consumption

 ○ 2 = Generation

● meterAccount: Address. Used by the cloud

Returns ● Nothing

Events

● MeterSet

saveEnergy
saveEnergy(string calldata meterId, uint32 energyAmount, uint8 energyType) external

Description

It aggregates the given energy measure into a PPA. It increases the PPA total and the current

open period total. The PPA and type of energy (consumed/generated) is deduced from the

meter.

Restrictions

● Only an address set as meters’ cloud in the PPA can call this method

● The PPA must have been previously signed

Parameters

● meterId: String. Id of the meter

● energyAmount: uint32. Amount of energy

● energyType: unit8. Type of energy to be saved

 ○ 1: consumption

 ○ 2: generation

Returns

● Nothing

Events

● EnergySaved

closeBalancePeriod
closeBalancePeriod(bytes32 ppaId) external onlyInvestorOrUser(ppaId) ppaSigned(ppaId)

Description

It calculates the energy cost of the current open period, registers it in the blockchain and resets

the period.

Restrictions

● The PPA must have been previously created

● The PPA must have been previously signed

● Only the owners of the PPA (investor or user) can call this method

Parameters

● ppaId: String. ID of the PPA.

Returns

● Nothing

Events

● EnergyPeriodClosed

closeValidationPeriod
closeValidationPeriod(bytes32 ppaId) external onlyInvestorOrUser(ppaId) ppaSigned(ppaId)

Description

It validates the clauses of the contract on demand. These clauses were defined on the contract

creation. If any clause is violated a new “PPA Clause violation” event would be emitted. Clauses:

- PPA’s total generated energy of the current open period is over maximum

- PPA’s total generated energy of the current open period is below minimum

- PPA’s total consumed energy of the current open period is smaller than the

generated energy.

Restrictions

● The PPA must have been previously created

● The PPA must have been previously signed.

● Only the owners of the PPA (investor or user) can call this method.

Parameters

 ● ppaId: String. ID of the PPA.

Returns

 ● Nothing

Events

 ● ClauseViolationAlert

2-CAPTURAS DE PANTALLA

Figura 1. Facturación diaria de costes PPA

Figura 2. Facturación diaria de costes PPA + Red + Vertido

Figura 3. Flujo de caja del contrato PPA

Figura 4. Alta y registro del contrato PPA

